Workload Balancing Among Heathcare Workers Under Uncertain Service Time Using Distributionally Robust Optimization

نویسندگان

چکیده

Healthcare systems are facing serious challenges in balancing their human resources to cope with volatile service demand, while at the same time providing necessary job satisfaction healthcare workers. In this paper, we propose a distributionally robust optimization formulation generate task assignment plan that promotes fairness allocation, attained by reducing difference total working among workers, under uncertain time. The proposed joint chance constraint model is conservatively approximated worst-case Conditional Value-at-Risk, and devise sequential algorithm solve finite-dimensional reformulations which linear (mixed-binary) problems. We also provide explicit formula situation where support set of random vectors hyperrectangle. experiment both synthetic real data indicates promising results for our approach.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Distributionally Robust Convex Optimization

Distributionally robust optimization is a paradigm for decision-making under uncertaintywhere the uncertain problem data is governed by a probability distribution that is itself subjectto uncertainty. The distribution is then assumed to belong to an ambiguity set comprising alldistributions that are compatible with the decision maker’s prior information. In this paper,we propose...

متن کامل

Calibration of Distributionally Robust Empirical Optimization Models

JUN-YA GOTOH, MICHAEL JONG KIM, AND ANDREW E.B. LIM Department of Industrial and Systems Engineering, Chuo University, Tokyo, Japan. Email: [email protected] Sauder School of Business, University of British Columbia, Vancouver, Canada. Email: [email protected] Departments of Decision Sciences and Finance, NUS Business School, National University of Singapore, Singapore. Email: andr...

متن کامل

Distributionally Robust Optimization for Sequential Decision Making

The distributionally robust Markov Decision Process approach has been proposed in the literature, where the goal is to seek a distributionally robust policy that achieves the maximal expected total reward under the most adversarial joint distribution of uncertain parameters. In this paper, we study distributionally robust MDP where ambiguity sets for uncertain parameters are of a format that ca...

متن کامل

Data-driven Distributionally Robust Polynomial Optimization

We consider robust optimization for polynomial optimization problems where the uncertainty set is a set of candidate probability density functions. This set is a ball around a density function estimated from data samples, i.e., it is data-driven and random. Polynomial optimization problems are inherently hard due to nonconvex objectives and constraints. However, we show that by employing polyno...

متن کامل

Distributionally Robust Stochastic Optimization with Dependence Structure

Distributionally robust stochastic optimization (DRSO) is a framework for decision-making problems under certainty, which finds solutions that perform well for a chosen set of probability distributions. Many different approaches for specifying a set of distributions have been proposed. The choice matters, because it affects the results, and the relative performance of different choices depend o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Asia-Pacific Journal of Operational Research

سال: 2022

ISSN: ['1793-7019', '0217-5959']

DOI: https://doi.org/10.1142/s0217595921500457